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AIIICraet-The problem of a penny-shaped crack in an infinite, finitely deformed, compressible elastic
material is considered. Solutions for a aeneral form of strain-:energy function are given for both circular
and eUiptic cracks when we have an equi-biaxial prestress in the plane of the crack. We also indicate how
solutions to more aeneral problems can be aenerated from previous work on elliptic cracks in linear
anisotropic materials.

I. INTRODUCTION
Recently, Selvadurai[l] has considered the problem of a penny-shaped crack in an infinite,
incompressible, finitely deformed elastic material. The crack is assumed to occupy the region
Z =0, 0 os.; R os.; A in the undeformed configuration and the finite equi-biaxial prestress is
assumed to be homogeneous with cylindrical principal axes. In this note we consider the
corresponding problem for a more general compressible material.

In Section 2 we derive the equilibrium equations and boundary conditions governing the
problem. The incremental equations based on nominal stress and deformation gradient are used,
see [2]. Following this we show that the potential methods developed for circular cracks in
isotropic linear elastic materials, [3] for example, can be applied to this more general case. The
solution for an arbitrary form of strain-energy function is obtained.

Shield [4] considered an elliptic crack in a linear, transversely isotropic elastic material and
we find that the method used is applicable to the above finite deformation problem when the
crack is elliptic rather than circular. We omit the details but the solution is given. While this
does, of course, include the circular case the displacements are given in terms of an integral
that is not particularly suitable for further analysis.

Finally we indicate how solutions to elliptic crack problems in a classical anisotropic elastic
medium [5] can be used to obtain solutions to the problem of an elliptic crack in an isotropic
hyperelastic material subjected to more general finite, homogeneous, deformations.

2. GOVERNING EQUATIONS
The body is assumed to undergo a finite homogeneous deformation such that the principal

Cauchy stresses are

u, =u" U z =0.

In terms of the strain-energy function W(A .. A2' AJ) we have

aW
Ju· = A·- (i = 1, 2, 3)

, I aAj

(1)

(2)

where subscripts (1,2,3) correspond to the (T, 8, z) directions respectively, Aj(i = 1,2,3) are the
principal stretches (AI = A2 =A say) and J = AI"2"J' From (1) and (2) we have an implicit
equation for ,,](,\), namely

The incremental equations can be written

divs = 0,
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(3)
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where div is the divergence operator in the current, finitely deformed configuration and 5 is the
increment of the (asymmetric) nominal stress tensor evaluated in the current configuration, see
[2] for details. We have

5=811,

where the non·zero components of the fourth order tensor of instantaneous moduli are

(4)

i¢ i, Aj ¢ Ai>
(5)

1
Bjjjj = rBjjij - Bjjjj +O'j) i# i, Aj = Ai>

and 11 is the incremental displacement gradient.
If we write u(r, z), w(r, z) for the incremental displacements in the radial and axial

directions respectively the incremental equations (3) for an axisymmetric displacement field in
cylindrical coordinates can be written

having used (3) with (4), (5) and (1). The subscripts r, Z denote partial differentiation.
To obtain solutions to (6) and (7) we introduce the potential function t/J(r, z) defined by

u =-{(Blm +Bml)/Bml}t/J,., }
w=BlIlI(t/Jrr + t/J'/r)/Bml + t/Jzz.

In this case (6) is satisfied identically, Substituting (8) into (7) leads to the equation

where the operators Vl are defined by

(
iJ 1 iJ) iJ2 •Vl=al a;J+riJr +a? (,= 1,2)

and alz, az2are the roots of the quadratic

(6)

(7)

(8)

(9)

(10)

We note that the potential function defined by (8) is the only potential function of that form
which will allow either (6) or (7) to be satisfied identically. Since t/J will not permit the
incompressibility condition to be satisfied it is clear that the problem for an incompressible
material will require a different method of solution, see [1].
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We suppose that the crack is opened by a constant pressure P so that the required boundary
conditions are

S31(r,0) =0,

S33(r, 0) = - P,

w(r,O)=O,

O~ r<oo, )
O$; r$; a,

a$; r< 00,

(12)

Henceforth we consider only the half-space z ~ 0, solutions for the lower half-plane may be
obtained by symmetry.

3. SOLUTION

By taking zero-order Hankel transforms of (9), with respect to r, we have

where

iU, z) =L'" rq,(r, z)Jo(~r) dr,

(13)

(14)

Jo being the Bessel function of the first kind of order zero, and cj(i = 1,2,3,4) are arbitrary
functions of f. We suppose that a" a2 have positive real parts so that c, = C3 = 0 to ensure finite
solutions as z-+oo. By taking the inverse transform of (13) with (12)11 (4) and (8) we find that

(15)

Similarly (12)3 leads to the condition

(16)

and (12)2 gives

(17)

where

P = {BIIII +BI133a22}/{(a, - a2)[G(BIIII - a,a2B'I33)
- B3333({aI2+a,a2 +a22}B1I1I +a,2alB II33 )]}, (18)

and

(19)

General dual integral equations of the type (16) and (17) have been solved by Sneddon[3, 6] for
example, and we find that

(20)

Substituting (20) into (13) and (14) gives, upon taking the inverse transform

w(r, z) = 2PP*L'" ("2JoUr)[a€ cos a€ - sin a€H[BIIII +B lI33al)

x (B3I3I a,2 - BIIII) e -tt,(z - (Bill I +B II33a/)(B3I3,al- B IIII ) e -tt1(Z} d€, (21)



702

where

D. M. HAUGHTON

u(r, z) = - (B1133 +B3I31 )2PP*L'" C2JMr)[a~ COS a~ - sin a~]

x {a2(BI\ II +B1133a12) e -a2tz - al(BI\I\ +BI\Ha22) e-attz} d~, (22)

In particular, for z = 0, we have

w(r, 0) = 2PP*(a2- ~)1/2(a/ - aI2)BI\I\(BII33 + B3I31 ), r ~ a}
u(r, 0) = 27TPP* r(al - a2)(BlI l\ - a.a2BII33)(BI\H + B3I31 ).

(23)

To make comparisons with previous work we now apply the Griffith criterion for crack growth.
It is easily shown that the crack will extend when the pressure reaches a critical value

(24)

where S is the surface tension of the material. The value of Pc for an incompressible material
was given in [I]. If we consider the special case A= 1 then a limiting proceedure gives

where p" v are the ground state shear modulus and Poisson's ratio respectively. This is the
result given in [3] for a linear isotropic elastic material.

If we set Pc == 0 then (24) provides an equation for the critical value of A at which the
surface of a radially compressed half-space may warp out of the plane. This bifurcation
problem has been considered in the more general context (AI 'f: A2) in [7].

4. AN ELLIPTIC CRACK

We now consider the problem of Section 2 when the crack is elliptic rather then circular. If
we write the general incremental equations, (3) with (4), for a homogeneous finite deformation
in Cartesian coordinates, (x.. X2, X3) in the current configuration, we have

B;jkIU,.;k =0, (j = 1, 2, 3) (25)

where the usual notation and conventions are adopted and u = (u .. U2. U3) is the incremental
displacement vector. It is obvious that there are similarities between (25) and the equilibrium
equations for a linear anisotropic elastic material, but the equations are not the same since
Bjjkl'f: Bj;kl, B;jkl'f: B jjlk in general. It is well known, however, that the methods developed for
anistropic 'elastic materials may often be successfully applied to the "corresponding" in­
cremental problem. For example, the incremental equations (6) and (7) have five independent
instantaneous moduli. Similarly, a transversely isotropic material' has five elastic moduli and so
we may expect some similarities between the above finite deformation problem for an elliptic
crack and the classical transversely isotropic problem [4]. We find that the method of [4] can in
fact be applied to this problem. However, symmetries of the classical elastic moduli not
available to the instantaneous moduli were employed and so it is not merely a matter of comparing
coefficients. We omit details but give the solution.

If, in Cartesian coordinates we assume the crack to occupy the region

(26)

in the current configuration and define
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where

kit 1e2 being the roots of

where K is the ~ period of the Jacobian elliptic function 9ft corresponding to the modulus

and, finally, 'Y is the positive elliptic coordinate, i.e. the positive root of

and if we are inside the ellipse 'Y = O. Then the displacements are given by

where

and
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While this solution contains the special case of a circular crack the direct approach of Section 3
gives the displacements in a more suitable form for further analysis.

S. FURTHER PROBLEMS

If we wish to consider problems with less symmetry than that above, in particular the case
AI ~ A2, then potential methods are no longer available and an alternative method of solution is
required. Willis[5] has given solutions to the problem of an elliptic crack in a general anistropic
linear elastic medium subjected to polynomial loading at infinity, the resultant displacement are
expressed in terms of a contour integral. Provided we have

(27)

for all unit vectors D, and we note that (27) is implied by the strong ellipticity condition

B'/lIQ,bpth, > 0 V non-zero vectors a, b,

then we need only replace ci/ld in [5] by Bjilk to obtain solutions to the corresponding
incremental problem.
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